Rapid fabrication method for 3D printed microfluidic devices

  • Whitesides, G. The Lab Finally Comes to the Chip!. lab chip 143125–3126 (2014).

    CAS Google Scholar Article

  • Reyes, DR, Iossifidis, D., Auroux, PA & Manz, A. Total Analysis Micro Systems: 1—Introduction, Theory, and Technology. Anal. Chem. 742623–2636 (2002).

    CAS Google Scholar Article

  • Kim, Y., Lee, J. & Park, S. A 3D-printed millifluidic platform enabling bacterial preconcentration and DNA purification for molecular detection of pathogens in blood. Micromachinery 9472 (2018).

    Google Scholar article

  • Nasseri, B. et al. Point-of-care microfluidic devices for the detection of pathogens. Biosens. Bioelectron. 117112–128 (2018).

    CAS Google Scholar Article

  • Kitson, PJ, Rosnes, MH, Sans, V., Dragone, V. & Cronin, L. Configurable millifluidic and microfluidic reactionware devices 3D printed on a chip. lab chip 123267–3271 (2012).

    CAS Google Scholar Article

  • Xi, J. et al. Development of a fast and high precision colorimetric device for the detection of organophosphate pesticides based on a microfluidic mixer chip. Micromachinery 12290 (2021).

    Google Scholar article

  • Li, F., Macdonald, NP, Guijt, RM & Breadmore, MC Using Print Orientation to Tune Fluid Behavior in Microfluidic Chips Fabricated by Fused Deposition Modeling 3D Printing. Anal. Chem. 8912805–12811 (2017).

    CAS Google Scholar Article

  • Mukherjee, P., Nebuloni, F., Gao, H., Zhou, J. & Papautsky, I. Rapid prototyping of soft lithography masters for microfluidic devices using dry-film photoresist in a non-clean room environment. Micromachines ten192 (2019).

    Google Scholar article

  • Zhou, Z., Chen, D., Wang, X. & Jiang, J. Milling positive master for polydimethylsiloxane microfluidic devices: microfabrication and roughness issues. Micromachinery 8287 (2017).

    Google Scholar article

  • Konstantinou, D., Shirazi, A., Sadri, A. & Young, EWK Combination of hot stamping and milling for medium volume production of thermoplastic microfluidic devices. Senses. Actuators B Chem. 234209–221 (2016).

    CAS Google Scholar Article

  • Wlodarczyk, KL et al. Rapid laser fabrication of microfluidic devices from glass substrates. Micromachinery 9409 (2018).

    Google Scholar article

  • Mahmud, MA, Blondeel, EJM, Kaddoura, M. & MacDonald, BD Characteristics of paper-based microfluidic devices fabricated by laser cutting: how big can they be?. Micromachinery 9220 (2018).

    Google Scholar article

  • Lee, UN et al. Fundamentals of rapid injection molding for microfluidic cell assays. lab chip 18496–504 (2018).

    CAS Google Scholar Article

  • Amine, R. et al. 3D printed microfluidic devices. Biomanufacturing 8022001 (2016).

    Article on Google Scholar Ads

  • Tasoglu, S. & Folch, A. Editorial for the special issue on 3D printed microfluidic devices. Micromachinery 9609 (2018).

    Google Scholar article

  • Kotz, F. et al. Modeling of the fused deposition of polymethyl methacrylate microfluidic chips. Micromachines 11873 (2020).

    Google Scholar article

  • Bhattacharjee, N., Urrios, A., Kang, S. & Folch, A. The next revolution in microfluidic 3D printing. lab chip 161720-1742 (2017).

    Google Scholar article

  • Kim, YT, Castro, K., Bhattacharjee, N. & Folch, A. Numerical fabrication of selective porous barriers in microchannels using multi-material stereolithography. Micromachinery 9125 (2018).

    Google Scholar article

  • Kotz, F., Risch, P., Helmer, D. & Rapp, BE Highly fluorinated methacrylates for optical 3D printing of microfluidic devices. Micromachinery 9115 (2018).

    Google Scholar article

  • Gong, H., Bickham, BP, Woolley, AT & Nordin, GP Custom 3D printer and resin for 18 × 20 µm microfluidic flow channels. lab chip 172899-2909 (2017).

    CAS Google Scholar Article

  • van der Linden, PJEM, Popov, AM & Pontoni, D. Accurate and fast 3D printing of microfluidic devices using wavelength selection on a DLP printer. lab chip 204128–4140 (2020).

    Google Scholar article

  • Rehmani, MAA, Jaywant, SA & Arif, KM Study of Fabricated Microchannels Using Desktop Fusion Deposition Modeling Systems. Micromachines 1214 (2021).

    Google Scholar article

  • Pranzo, D., Larizza, P., Filippini, D. & Percoco, G. Extrusion-based 3D printing microfluidic devices for chemical and biomedical applications: a topical review. Micromachines 9374 (2018).

    Google Scholar article

  • Gyimah, N., Scheler, O., Rang, T. & Pardy, T. Can 3D printing bring droplet microfluidics to every lab? A systematic review. Micromachines 12339 (2021).

    Google Scholar article

  • Peng, Y. et al. Direct ink writing combined with metal-assisted chemical etching of microchannels for microfluidic system applications. Senses. Actuators A Phys. 315112320 (2020).

    CAS Google Scholar Article

  • Ching, T. et al. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Senses. Actuators B Chem. 297126609 (2019).

    CAS Google Scholar Article

  • Macdonald, N.P. et al. Comparison of microfluidic performance of three-dimensional (3d) printing platforms. Anal. Chem. 893858–3866 (2017).

    CAS Google Scholar Article

  • Au, AK, Lee, W. & Folch, A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. lab chip 141294-1301 (2014).

    CAS Google Scholar Article

  • Wahid, S. et al. 3D printed microfluidic devices: facilitators and barriers. lab chip 161993-2013 (2016).

    CAS Google Scholar Article

  • Yin, P. et al. Engineering the elimination of sacrificial materials in 3D printed microfluidics. Micromachines 9327 (2018).

    Google Scholar article

  • Balakrishnan, HK et al. 3D Printing: An alternative approach to microfabrication with unprecedented design opportunities. Anal. Chem. 93350–366 (2021).

    CAS Google Scholar Article

  • Salentijn, GI, Oomen, PE, Grajewski, M. & Verpoorte, E. 3D printing of fusion deposition modeling for the fabrication of (bio)analytical devices: procedures, materials and applications. Anal. Chem. 897053–7061 (2017).

    CAS Google Scholar Article

  • Zeraatkar, M., Filippini, D. & Percoco, G. On the impact of manufacturing method on the performance of 3D printed mixers. Micromachines ten298 (2019).

    Google Scholar article

  • Romanov, V. et al. FDM 3D printing of transparent, heat-resistant and high-pressure microfluidic devices. Anal. Chem. 9010450–10456 (2018).

    CAS Google Scholar Article

  • Bressan, LP, Adamo, CB, Quero, RF, de Jesus, DP & da Silva, JAF A simple procedure to produce FDM-based 3D printed microfluidic devices with an integrated PMMA optical window. Anal. Methods 111014-1020 (2019).

    CAS Google Scholar Article

  • Duong, LH & Chen, PC Simple and inexpensive production of 3D-printed hybrid microfluidic devices. Biomicrofluidics 13024108 (2019).

    Google Scholar article

  • Fornells, E. et al. 3D printed integrated heating elements for microfluidic applications: analysis of ammonium in environmental water. Anal. Chem. Act 109894-101 (2020).

    CAS Google Scholar Article

  • Ruiz, C. et al. Fabrication of hard and soft microfluidic devices using hybrid 3D printing. Micromachines 11567 (2020).

    Google Scholar article

  • Nelson, MD, Ramkumar, N. & Gale, BK Flexible, Transparent, Sub-100 µm Microfluidic Channels with Fused Deposition Modeling 3D Printed Thermoplastic Polyurethane. J. Micromech. Microeng. 299 (2019).

    Google Scholar article

  • Comments are closed.